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Initial situation

1 Initial situation

In a domain [0, 7] x Q with Q ¢ R?, d = 2,3, the incompressible Navier-Stokes
equations take the form

Ol = 0, Ot (puq) + 03(puaug) + 0o P = p0gdgue + paq (1)
with
t:timeins
p : density in k—%
m

, .m
uq : COmponents of the velocity vector in <

. . kg
P : dynamic pressure in Pa = ——
y P <m
L L kg
= hydrodynamic viscosity in Pa - s = o
. .m
a,, : components of the acceleration vector due to a volume force in 2

O, : time derivative
0O, : Space derivative in direction a.

Dividing the momentum equation in (1) by the constant density p, we obtain

OnUuq = 0, Orua + 0g(uaug) + 0ap = v0g0gU + Gq (2)
with

P . . m?
p = — : kinematic pressure in —-

p S

2

. . .m
v =2 kinematic viscosity in -~

p

2 Problem scale

While SI'units are important to communicate the size of physical constants, their
use to characterize specific problems is limited. For that purpose, it is preferable



Lattice scale

to choose intrinsic or problem related units. Specifically, we use a characteristic
length LY [m], a characteristic time T [s], a typical velocity U? [m/s] and
characteristic acceleration A" [m/s?] and pressure P¥ [m?/s?] to scale the
Navier-Stokes equations (2). The relevant, non-dimensional quantities are

defined by

_ Lo _ (I — t _ D _ Qo

Ta=7p Ua=gFp =75 P=ppr Ga= 4p (3a)
and therefore

0 =TY0, 08, =L"0,. (3b)
Inserting those relations into (2), we obtain
5041104 - 07
(UP)2 ~ (UP)Q ~ pP UPy _ _
A U, U —50aD — Ug = Ap_a-
TP Orlig + P 0s(tatg) + LP(? D (LP)Q(?gagu a

If we connect time, length and velocity scale according to U¥ = L¥ /T? and
choose PP = (UF)? as typical pressure, we obtain
_ _ _ _ 1 - -
Do lia = 0, Ofliq + 0g(tatig) + 0D — Eaﬁagﬂa = Frdo‘
where Reynolds and Froude number are defined by
_LPUP (UP)?

Re = s FT:LPAP'

3 Lattice scale

We consider a lattice Boltzmann algorithm of the form
filt + 0, @ + 0cy) = fi(t,x) + J;(f(t,@)).

Choosing the typical length LB = §,, the typical time 18 = §; and the typical
velocity UYP = ¢ = 6x/6t, we obtain the scaled quantities
N T C; f t
« 633 b (4 9 I

& (St
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which lead to the lattice Boltzmann equation in usual form
fill+ 1,8 + &) = fill, &) + Ji(f(£,2)),

where

8aua — 07 tua + ﬁ(uauﬁ) + aap R LB aﬁaﬁua - F LB Qo
with 9
co c
R LB T F LB —
e o r 5. AP

4 Asymptotic analysis scale

Using asymptotic analysis the relation between the lattice Boltzmann algorithm
and the Navier-Stokes equation can be clarified. To simplify the computation, a
scaling which is characteristic for both the flow problem and the algorithm is
used. Specifically, the length scale is LA = L”, the velocity scale is

UA = ¢, /LT with related time scale T4 = LA /U4 This choice leads to a
relation between scaled space and time steps Az = 6,/L4 and At = §;/T4

5 6 UM 6

A = — = =
b=7a= A c(LA)

_ 2
Q—Aa:.

If the Navier-Stokes equations are non-dimensionalized with respect to the
asymptotic analysis scale, they have the form

_ = = . = . 1 -~ . 1 _
8&”0{ = 0, (9t~ua + 0g(uau5) + 8ap — W@ﬁ@gua = WGQ (4)
where Reynolds and Froude number are defined by
LAUA

(v’
Re* T FTA:LAAP.




Using the asymptotic analysis

We remark that due to the definition of U4, we have

Re? = Rel'B, Frd = B Ag?
The relation to the parameters in the problem scale is given by
Az Az\? UP
Re® = Re— P =Fr(— Ma = —
e Vo’ r r <Ma> ) a c

Results of the asymptotic analysis (for example in [1]) can now easily be
translated to the other relevant scales.

5 Using the asymptotic analysis

In [1] it is reported that for £ = nAt and # = jAxz, the algorithm
filn+1,3+ &) = filn, ) + Ji(F(n, 5)) + Aa’c? f7e; - G(n, 5)
is consistent to the Navier-Stokes problem

Ouli, = 0, il + O (Tailg) + Oap = <¢ — %f@é) 950510 + Go (5)

provided the collision operator is of the form
Ji(f) = A(FF) = f)
where the collision matrix A has eigenvectors Af‘ﬁ = CiaCig — écwcwéaﬁ with
common eigenvalue X = kc2 /1. The flow variables (4, ) are connected to f via
p=> fi, AP =cl(p—1), adz=> &fi

)

Due to LA = L” and Re? = ReAz/Ma we have U4 = UP Az/Ma, and

therefore
Ty T - .
.fa:F:F:xa:]Al', (68)
_UP MaUA  Ma- Ma
= = V— | = — ] = —— A
t LPt Ax LAt Axt Az t, (6b)
iy = Lo _ AT Y. Az, 60)
Y= 0P T MaUA ™~ Ma'®
Az? Az?
p= p N p _ P (6d)

(UP)? Mo (UA)? Ma
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In order to match the required viscosity parameter 1/Re? in (4), we need
A2

(5-3) =

Using the relation between Re” and Re, we come to the conclusion
1 Ma

N 1
V= RelB _EE

Comparing (5) and (4), we see that G, has to be equal to a,/Fr# to make sure
that the lattice Boltzmann algorithm approximates the correct problem. The

force term in the algorithm thus needs to be of the form
2w~ 1 QA —2px, =
fici-a:ﬁMa Azxc;“fici-a

1 _
c

1 —9 .k -
WAmscs 2fz’ C-a= FrLB s
Note that the function a differs from a in (3) only in the time argument which is

scaled with respect to 74 instead of T'7.
Ma? Az n
i CZ‘ -a

In summary, the lattice Boltzmann algorithm

filn+ 1,5 + &) = fi(n, 5) + Ji(f(n,4)) +
is consistent to the Navier-Stokes problem
Ma 1 ~ ~ _

Onllq =
Keeping in mind that Ma = O(Axz) is required for consistency to the
incompressible Navier-Stokes equations [2] we choose an appropriate ¢ > 0
such that Ma = @Az, so we can rewrite equations in the form
2 A.%'3
22T prea (8a)

filn+ 1,5+ &)= filn,§) + Ji(f(n,5)) +

respectively
aaaa = 0, faa + ~ﬁ(ﬂaaﬁ) + 5Olﬁ = %55862%“ +
b

and (6) reduces to
t = ot = npAt,

To = Ta :]AI‘,



Comparison to the previous
approach

6  Comparison to the previous approach

Previously, a direct approach to express stationary Navier-Stokes equations (2) in
lattice units was used at Fraunhofer ITWM. This approach was based on the
simulation parameters  and a,, as well as the characteristic quantities

=852
LB — s god — ¥ Told _ vox
’ vox’ v

This approach leads to the scaled Navier-Stokes problem

Oatia =0,  Oiig + 0p(itatiig) + Oap = 00305t + Gq
with
. f—t S . p . O
Ta =718 V7T paar Yo T goar P (old)? Qo = (Uold)zaa
and the lattice Boltzmann algorithm
. L. < v - e L LCi-a
filt+6t, & + &0x) = fi({,&) + J; (f ({,&)) + f; o
S

Comparing this model to equations (8), we find that the old model corresponds
to the special case
UPLP
YT Uoldsy
in (8) and, therefore, to the lattice scale model discussed in Section

LY = L'B = 5z

7 A specific example

We consider a flow in an infinite vertical channel filled with turpentine under
the action of constant gravity. The width of the channelis T mm, the initial
velocity is zero, the hydrodynamic viscosity is u = 1490 uPa s, the density is

p = 0.86 g/cm? and the acceleration is —(0, g) where g = 9.81 m/s2.



A specific example

Figure 1
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Numerical velocity "™ and analytical velocity @2"@ (left), relative error ||w — w™™M||,, / ||wl|, (middle), as well

as numerical pressure p (right) for t = 0.2, ¢ = 0.5, and Az = 1/16

As problem scales, we take L =1 mm and AP = ¢. The velocity and time
scales are then derived (for example) from the acceleration and length scale
TP = \/LP /AP = 0.0101 sand UF = LY /TT = VAPLF ~0.099 m/s. As
Reynolds and Froude number, we find

LP P
Re:p v

~ 5717,  Fr=1.

Since the force term is constant in space and time, we have a = a = —(0,1).
The solution of the scaled Navier-Stokes problem has the form

u(t,z) = (0,7 (t,7)), p(t,x) = 0.

where
_ Re < Fr 4
v(t,x) = Fﬁ 7;) <eXp <—R—Zt)\i> — 1) b¥) sin (A @), A= (C2n+1)m
with limit value R
i o(f ) = LRe
{lirgov(t,x) =3 Frm(x 1).

In order to run a lattice Boltzmann simulation, we choose a discretization
parameter Az = §,./LF and a suitable value for Ma = U /c which should not
be too far from Ax to ensure proper convergence to the Navier-Stokes
equations. Setting Ma = pAxz, the relaxation time parameter © has to be set to
v = ¢/ Re and the lattice Boltzmann algorithm reads

filn+ 1.+ &) = Filn.§) + Ti(F(n.5)) — P Dabe; e,

A comparison of numerical and exact solutions (in the problem scale) for
t €{0.2,04,0.6,0.8,1.0,3.0}, ¢ € {0.5,8.0}, and Az € {1/16,1/32} is given in
Figures[1 to[24!
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Figure 2

Figure 3

Figure 4

-0.1
zana
“o2 O ghum
-0.3
-0.4
-0.5
0 0.5
T

rel. error

IN

N

x 10

-3

x 10"

Numerical velocity "™ and analytical velocity z"@ (left), relative error ||@ — w™™||,, / |lall, (middle), as well

as numerical pressure p (right) for ¢ = 0.4, ¢ = 0.5, and Az = 1/16
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Numerical velocity @™™ and analytical velocity %" (left), relative error ||@ — wUm||,, /||@l|, (middle), as well

as numerical pressure p (right) for = 0.6, ¢ = 0.5, and Az = 1/16

-0.2
42na
—04 O ghum
-0.6
-0.8
-1
0 0.5
z

rel. error

-3

x 10
3
2
1
0
0 0.5
T

-14

x 10

I, -10

-15

-20

Numerical velocity "™ and analytical velocity @@ (left), relative error ||w — w™™M||,, / ||al|, (middle), as well

as numerical pressure p (right) for t = 0.8, ¢ = 0.5, and Az = 1/16
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Figure 5 Numerical velocity "™ and analytical velocity z"@ (left), relative error ||@ — w™™||,, / |lall, (middle), as well

as numerical pressure p (right) for ¢ = 1.0, ¢ = 0.5, and Az = 1/16
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Figure 6 Numerical velocity @™™ and analytical velocity %" (left), relative error ||@ — wUm||,, /||@l|, (middle), as well

as numerical pressure p (right) for t = 3.0, ¢ = 0.5, and Az = 1/16
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Figure 7 Numerical velocity "™ and analytical velocity @@ (left), relative error ||w — w™™M||,, / ||al|, (middle), as well

as numerical pressure p (right) for = 0.2, ¢ = 8.0, and Az = 1/16
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Figure 8 Numerical velocity "™ and analytical velocity z"@ (left), relative error ||@ — w™™||,, / |lall, (middle), as well
as numerical pressure p (right) for ¢ = 0.4, ¢ = 8.0, and Az = 1/16
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Figure 9 Numerical velocity @™™ and analytical velocity %" (left), relative error ||@ — wUm||,, /||@l|, (middle), as well
as numerical pressure p (right) for = 0.6, ¢ = 8.0, and Az = 1/16
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Figure 10 Numerical velocity "™ and analytical velocity @@ (left), relative error ||w — w™™M||,, / ||al|, (middle), as well

as numerical pressure p (right) for = 0.8, ¢ = 8.0, and Az = 1/16
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as numerical pressure p (right) for ¢ = 1.0, ¢ = 8.0, and Az = 1/16

as numerical pressure p (right) for t = 3.0, ¢ = 8.0, and Az = 1/16
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as numerical pressure p (right) for = 0.2, ¢ = 0.5, and Az = 1/32
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Numerical velocity "™ and analytical velocity z"@ (left), relative error ||@ — w™™||,, / |lall, (middle), as well

-13

0.5

x 10
5
0
-5
0 0.5 1
T

-3

Figure 14
as numerical pressure p (right) for ¢ = 0.4, ¢ = 0.5, and Az = 1/32
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Figure 15 Numerical velocity @™™ and analytical velocity %" (left), relative error ||@ — wUm||,, /||@l|, (middle), as well
as numerical pressure p (right) for = 0.6, ¢ = 0.5, and Az = 1/32
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Figure 16 Numerical velocity "™ and analytical velocity @@ (left), relative error ||w — w™™M||,, / ||al|, (middle), as well

as numerical pressure p (right) for = 0.8, ¢ = 0.5, and Az = 1/32
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as numerical pressure p (right) for t = 3.0, ¢ = 0.5, and Az = 1/32
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as numerical pressure p (right) for = 0.6, ¢ = 8.0, and Az = 1/32
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Figure 23 Numerical velocity "™ and analytical velocity @2"@ (left), relative error ||w — w™™M||,, / ||wl|, (middle), as well
as numerical pressure p (right) for = 1.0, ¢ = 8.0, and Az = 1/32
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Figure 24 Numerical velocity "™ and analytical velocity @@ (left), relative error ||w — w™™||,, / |lwll, (middle), as well

as numerical pressure p (right) for t = 3.0, ¢ = 8.0, and Az = 1/32
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